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Spontaneous emission of a continuum sine-Gordon kink
in the presence of a spatially periodic potential

C. R. Willis
Department of Physics, Boston University, Boston, Massachussett 02215

~Received 19 September 1996!

We find the spontaneous emission of radiation of a sine-Gordon kink perturbed by a spatially periodic
potential by solving the lowest order coupled collective variable and phonon equations. We show that the
radiation rate is finite, and that the qualitative properties of the kink and the radiation are a special case of the
phenomena that occur at the lower band edge in the discrete sine-Gordon equation. Thus we solve the radiation
threshold problem for a sine-Gordon kink in a periodic potential for weak coupling. In the Doppler limit we
calculate the rate of decay of the kink velocity due to phonon emission, and show that the rate is a generalized
power law.@S1063-651X~97!04105-6#

PACS number~s!: 03.40.Kf
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I. INTRODUCTION

There are many nonlinear problems which can be
scribed by the addition of potentials or inhomogeneity to
nonlinear Klein-Gordon equation which possess kink so
tions. The additions will usually destroy the integrability if
exists and will alter the nature of the kink solutions. In t
case of the discrete sine-Gordon~SG! the effect of the dis-
creteness is to alter the shape of the kink, cause the kin
radiate phonons and to cause the kink to be trapped in a
of the Peierls-Nabarro~PN! potential. A very useful aid to
understanding the radiation and trapping phenomena fo
arbitrary potential or inhomogeneity is to express the origi
problem in terms of one or more collective variables and
phonon degrees of freedom. One finds that the radiation f
the trapped case is very different than that from the
trapped case. The frequency in the trapped case is d
mined by the curvature of the PN well and by the Dopp
frequency in the untrapped case. In the Doppler limit wh
the kinetic energy@ potential energy the kink radiate
phonons and damps due to spontaneous emission. The
pler radiation problem is analogous to the problem of cal
lating the radiation relaxation time of an accelerating el
tron due to radiation of electromagnetic waves. In fact,
this paper we use the same historical method used to ca
late the radiating electron relaxation time. The only sign
cant qualitative difference of the electron and nonline
Klein-Gordon cases is that the kink case has a phonon cu
at the finite lower band edge, so that the Doppler radiat
ceases when the velocity of the kink decays to the value
the velocity which causes the Doppler frequency to equal
frequency of the lower band edge. We will treat the co
tinuum sine-Gordon kink so there is a single length scale
the unperturbed problem, i.e., the length of the kink. T
perturbation or inhomogeneity may have many length sca
For clarity of presentation we take a spatially period pert
bation of a single length scalek21.

Consequently, here we solve for the spontaneous emis
of a continuum SG kink and calculate the radiation damp
caused by a spatially periodic potentiale coskx for small e
using the lowest order ine coupled phonon and collectiv
551063-651X/97/55~5!/6097~4!/$10.00
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variable~CV! equations of motion. Consequently, we sol
the radiation threshold problem of a SG kink in a period
potential. We show the radiation caused bye coskx in the
continuum is essentially a special case of the radiation p
nomena that occurs at the lower band due to discreteness
occurs in the discrete SG equation. The SG equation in
presence ofe coskx is

f̈2f95
dV

df
52~p/ l 0!

2~11e coskx!sinf, ~1!

where the dot~prime! represents the derivative with respe
to time ~space!. We introduce collective variablesX(t) rep-
resenting the center of mass of the kink, andG(t) represent-
ing the slope of the kink with the ansatz

f~x,t !5s@G~ t !„x2X~ t !…#1x@G~ t !„x2X~ t !…,t# ~2!

wheres(y)[taney. In Ref. @1# the rigorous derivation of the
equations of motion forx(t), X(t), andG(t) are given for
the casee50. The derivation foreÞ0 consists simply in
replacing (p/ l 0)

2@12cosf# of Ref. @1# by (p/ l 0)
2(1

1e coskx)@12cosf#.
For relativistic velocities it is necessary to have the c

lective variableG(t). In the present paper, for convenienc
we consider the nonrelativistic or slightly relativistic case
taking G(t)5(p/ l 0)g(t) where g[(12X2)21/2, i.e., we
treat G as a kinematic term instead of an independent
namical variable. Since we are considering spontane
emission caused bye coskx with e small, we can linearize
Eq. ~1! for x with respect toe, and obtain

ẍ2x91~p/ l 0!
2cossx[ẍ1Lx52es9~p/ l 0!

2coskx,
~3!

where prime ons8 represents derivative with respect to th
argument ofs, and where we useds95sins. When we sub-
stitute Eq.~2! for f in Eq. ~1!, multiply by s8, and integrate
over x, we obtain the equation of motion for the CV,X(t):
6097 © 1997 The American Physical Society
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MxẌ5 K s8udVds L 5e~p/ l 0!2E s8~ j!s9~ j!

3cosk~ j/G1X!dj ~4!

where

Mx[G^s8us8&58G, ^AuB&[E A~j!B~j!dj.

There are no terms proportional tox on the right-hand side
of Eq. ~4! to first order ine, because the kink does not inte
act further with the phonons the kink radiates as described
Eq. ~3!. Since we are considering the case where all
phonons come from spontaneous emission induced
e coskx, so thatx;e, we can also neglect the dynamic
dressing ofMx . The two coupled equations~3! and ~4! for
Ẍ and ẍ constitute a complete closed collective variable d
scription to ordere of Eq. ~1! for f with s given by Eq.~2!.
There are two constraints@1# that have to be satisfied whic
are satisfied in the calculation of the radiation below. Eq
tions ~3! and ~4! conserve the energy of the kink an
phonons to ordere which leads to the result that there are
divergences in radiation rates in the linear ine theory. In
particular, the spurious divergence that appears in the ca
lation of the phonon radiation rate using just Eq.~3! instead
of the coupled equations~3! and~4! arises because the com
plete linear theory ine requires the energy gain of th
phonons to be compensated by energy loss of the kink w
causeẊ to be a decaying function of time instead of being
constant, thus invalidating the initial assumption thatẊ is
independent of time@2#.

II. ANALYSIS OF EQUATION OF MOTION FOR Ẋ„t…

We first analyze the nonlinear motion of the kink in th
coskxpotential neglecting radiation. Evaluating the integr
in Eq. ~4!, we obtainẌ5v2sinkX, where

v25~e/pG!~p/ l 0!
2h2~sinhh!21, ~5!

where l 0 is the size of the kink,l is the wavelength of the
potential, andh[(kl0/2g).

The pointX50 is unstable, so we define 2pz5kX1p,
and Eq.~5! becomes

z̈1~V2/2p!sin2pz50,

where

V2[kv25~2e/ l 0
2!h3~sinhh!21, ~6!

which is the pendulum equation. The maximum value of
frequencyV is Vm[0.74(e)1/2, and occurs forl5 l 0 , i.e.,
when the wavelength of the potential is equal to the size
the kink. We can gain insight into the coskx problem when
we observe that Eq.~6! is a special case of the equation
motion for the bare center of mass CV in a discrete SG@3#

Ẍ1 (
n51

`

Vn
2sin2pnX50 ~7!
y
e
y

-

-

u-

ch

s

e

f

corresponding to the single termn51. The qualitative radia-
tive phenomena that occur at the lower band edge in
discrete SG occur in the continuum SG in the coskx poten-
tial. When a harmonic ofV, nV, is greater than the lowe
band-edge phonon,p/ l 0 enters the phonon band for the fir
time, and there is a burst of phonon radiation@3#. There is a
decrease of radiation~called a knee! @4#, when the Doppler
frequency crosses the lower phonon band edge, so that D
pler radiation is no longer possible, and all that remains
the much weaker anharmonic radiation. The energy of
nonlinearz oscillator is

Ez5Ez
01 1

2Mzż
21MzS V

2p D 2@12cos2pz#, ~8!

whereMz[(2p/k)28G and the well depth of the potential i
Dz[2Mz(V/2p)25(8ep/g l 0)h(sinhh)

21. The threshold
condition on the velocity for trapping the kink in a potenti
well is żT5(V/p), which corresponds to ẊT
5G21(2eh/sinhh)1/2.

III. KINK RADIATION

There are three kink radiation regimes. The first is t
Doppler regime wherekẊ.(p/ l 0), and where the kinetic
energy~KE! is much greater than the potential energy~PE!.
The completely trapped regime where PE.KE and the inter-
mediate regime where KE and PE are comparable. In
trapped regime whereẊ(t),ẊT , and in the intermediate re
gime, the kink radiates phonons at harmonics ofV such that
nV.(p/ l 0). The flux at frequencynV of the radiating
trapped kink is proportional toe2(kX0)

2n/(n!) 2, where
kX0,1, the lowest harmonic for smalle, is typicallyn54 or
greater. Most of the radiation comes from the harmonic w
the smallestn, such thatnV>1, where in the remainder o
the paper we take units wherep5 l 0 , so that the band-edg
frequency is one in the new units andh[(kp/2g). The
reason for the harmonic nearest the band edge radiating
most is because the phonon density of states is largest a
band edge. In the Doppler regime~with which we are mainly
concerned in the paper! we can take the kink to be an almo
free particle with constant velocityv, i.e., Ẋ5v, as long as
kẊ@1. The solution of Eq.~3! for x in the laboratory frame
is

x~x,t !522eE
0

`

dlE
0

t

dt c l* ~x!v lsin@v l~ t2t!#dt

3E
2`

`

c l„j2X~ t !…s9„j2X~ t !…coskj dj, ~9!

where

Lc l5v l
2c l ;c l*5~2pv l !

21/2e2 i ly~ i l2tanhy!

and

v l
25~11 l 2!.

In order to evaluate Eq.~9!, we perform a Lorentz transfor
mation from the laboratory frame to the rest frame of t
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kink, because the phonons are orthogonal to the kink sh
mode in the rest frame and thus the constraints onx are
satisfied in the rest frame. The Lorentz transformation isx8
5g(x2vt), t85g(t2x/v), k85g(k2v/v) andv85g(v
2kv). In the laboratory frame the potential coskx has no
time dependence, sov50, and coskx becomes cosgk(x8
2vt8). The j integral in Eq.~9! becomes

~2pv l !
21/2E djeil j~ i l2tanhj!s9~j!cosgk„j2X~ t8!…

'p~v l
22g2k2!~2pv l

2!21/2H eigkvt8sechF S p

2 D ~gk2 l !G
1~k↔2k!J , ~10!

where the approximation represents the replacemen
X(t)5* tv(t)dt with time-dependentv(t) by the constant
v, X(t)5vt, which is valid as long asv, which is a damped
oscillatory function of time, can be treated as approximat
time independent. When we substitute Eq.~10! into Eq. ~9!,
we obtain

x~x8,t8!5~2p!1/2e Re E
0

`

dl c l* ~x8,t8!

3E
0

t8
dt̄ sinv l~ t82 t̄ !~g2k22v l

2!

3H sechS p

2 D ~gk2 l !eigkvt1~k←2k!J .
~11!

When we lett8→` in the t̄ integration, we obtain thed6
functions where d6(a)[*0

`e6 iatdt5pd(a)6 iP(1/a),
and whereP means the principal part anda[v l1gkv. The
result of performing the time integration is

x~x8,t8!52
e

2 E
0

`

dl~g2k2v22v l
2!v l

23sechS p

2 D ~gk2 l !

3H Fp ld@v l2gkv#1tanhx8PS 1

v l2gkv D G
3cos~ lx82v l t8!1S p tanhx8d@v l2gkv#

1 lPS 1

v l2gkv D D sin~ lx82v l t8!1~k↔2k!J .
~12!

The term with1k (2k) is the wave going to the right~left!.
Usually thed function term is larger than the principal pa
term. Consequently, we evaluate thed function terms which
require the introduction of the phonon density of sta
r(v l)dv l5dl, wherer(v l)5(v l / l ). The argument of the
d function vanishes whenv equals the Doppler frequenc
gkv, and thus forl̄5@(gkv)221#1/2. The solution forx in
the kink’s rest frame is
pe

of

y

s

x~x8,t8!52ep~2gv2l̄ !21$sech@~p/2!~gk1 l̄ !#

3@ l̄ cos~ l̄ x82gkvt8!1sin~ l̄ x82gkvt8!#

1~k↔2k!%. ~13!

We calculate the energy fluxS̄, which is defined as the time
average of the product (ẋx8)avg, and obtain the net flux

S̄5~ep!2k3~8gv l̄ !21$sech2@~p/2!~gk1 l̄ !#

1sech2@~p/2!~gk2 l̄ !#% ~14!

evaluated at a distance greater than the size of the k
where tanhx851, and where the first~second! term in the
brackets is the flux to the right~left!. In the limit l̄→0 the
right and left fluxes become equal in magnitude. More i
portantly, asl̄→0, the band edge, the flux diverges, i.e., t
rate of increase of phonon energy becomes infinite, whic
impossible for the solution of Eqs.~3! and ~4! because the
energy of kink plus phonons is conserved and we start
tially with a finite energy kink. The divergence results b
cause the condition for the Doppler limit, i.e., the velocity
the particle can be taken as effectively constant is no lon
true whenl̄→0. Since the energy of kink plus radiation
conserved, the kink loses energy at the negative of the ra
increase of the phonon energy. Consequently,Ẋ(t) becomes
time dependent, and decreases appreciably asl̄→0. The
cause of the problem is the phonon density of states, and
d function which results from taking the velocity of the kin
to be constant. There is no divergence when we use b
Eqs. ~5! and ~9!, which entails a time-dependent velocit
because there is no longer ad function in frequency, and the
resultant frequency integral is over a smooth function of f
quency which is integrable at thel̄→0 limit.

IV. TIME DEPENDENCE OF Ẋ
DUE TORADIATION DAMPING

We can use the conservation of total energy to determ
the time dependence of the kink velocity in the limit whe
KE@PE, because we can neglect the PE of the kink, and
the fact that the time rate of change of the kink’s KE is t
negative of the total flux of phonons which is proportional
e2; thus the velocity is slowly varying compared to the Do
pler frequencygkv, which is>1:

d

dt S 12 MẊ2D52~ep!2k3~8l̄ V!21$sech2~p/2!~gk1 l̄ !

1sech2~p/2!~gk2 l̄ !%. ~15!

Define m[gkẊ, use l̄5(m221)1/2, and substitute in Eq
~15!, which becomesm3(m221)1/2dm52t21dt, where t
[32@„egp sech (p/2)gk…2k6#21, where we setl̄ equal to
zero in the argument of the sech because the dominant
tribution comes in the neighborhood of the band edge. T
condition for the validity of the first Born approximation i
t@(gkv)21, which is satisfied for sufficiently smalle, and
is of the same form as the usual Born approximation
spontaneous emissionvt@1. The solution of Eq.~15! is
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4~ t2t f !

t
52m~m221!1/2~m22 1

2 !2221ln@m1~m221!1/2#

~16!

wheret f is the time it takes the kink to lose energy, such th
m5gkẊ(t f)51, at which point the kink stops radiating b
the Doppler mechanism. The timet f is a function of only
m05gkẊ(0), where Ẋ(0) is the initial velocity, andt f is
determined by settingt50 in Eq. ~16! and using the defini-
tion of t. For typical values ofẊ(0), t f;0(t). The mini-
mum value oft occurs forgk;3 which corresponds tol
;g l 0 , i.e., to al about the size of a kink. When the damp
time dependence of Eq.~16! for Ẋ(t) is substituted into
X(t)5* tẊ(t8)dt8, andX(t) is inserted into Eq.~9!, the ra-
diation rate remains finite.

The approach to spontaneous emission in this sectio
essentially the same as the elementary historical approac
the problem of radiation damping of an accelerated elect
where the damping is calculated by using the conservatio
energy of the particle plus radiation; e.g., see Ref.@5#. The
acceleration of the kink in this case is caused by
sin2pz term in Eq.~6!.

V. DISCUSSION AND CONCLUSION

The same type of behavior is observed in the decay rat
the velocity of the kink in the discrete radiation problem@3#
where a complicated power-law type of decay ofẊ(t) is also
observed. In both the present coskxpotential problem and the
discrete kink problem whengkẊ is less than 1, there is
sharp drop in the rate of radiation called a ‘‘knee’’@4# be-
cause there is no longer any Doppler radiation, and all
remains is weaker radiation which is always present due
the nonlinear harmonicsnV which are resonant with the
phonon band. However, in the discrete SG there is more
one knee, i.e., there is a knee for eachn in the sum in Eq.~7!
while there is only one knee in the continuum SG with
spatially periodic potential.

Essentially the same fluxS̄, Eq.~14!, was obtained in Ref
@6# by finding a different Green’s function for Eq.~1! linear-
ized about the kink solution with constant velocity. The a
thors of Ref.@6# treated the constant velocity case only, a
their solution was not valid in the neighborhood of the ba
B

t

is
to
n,
of

e

of

at
to

an

-

d

edge. If external damping and driving are added to Eqs.~3!
and ~7!, Refs. @7# and @8#, the fundamental problems tha
exist in the undamped and undriven case do not occur
cause~1! the damping changes thed function that occurs in
Eq. ~12! into a Lorentzian of widtha, wherea is the external
damping constant which leads to a finite damping rate of
kink proportional toa21; and ~2! in the steady state the
velocity of the kink becomes a constant independent of tim

In conclusion, the first order ine coupled equations o
motion for the kink center of mass,X(t), and phonons,
x(t), solves the radiation threshold problem that was rai
in earlier papers and thoroughly discussed in Ref.@9#. Our
results forgkv,1, when there is no Doppler radiation, in
dicate that there is a weak anharmonic radiation for thenth
harmonic wherenV.1 due to the nonlinearity of the
sinkX motion. Whengkv.1 and KE@PE, there is strong
Doppler radiation because the Doppler frequencies are r
nant with frequencies in the phonon band in lowest ord
i.e., the first. Ifgkv.1 and KE.PE, there are both Dopple
and anharmonic radiation present. In the Doppler limit wh
gkv becomes equal to 1, the Doppler radiation ceases,
there a sharp drop in the radiation rate called a knee. In R
@9#, where the same model was used, the knee in the ra
tion rate was missed because all the frequencies in the s
lations corresponded to Doppler frequencies in the gap
not in the phonon band. Consequently, the only radiation w
the anharmonic radiations of the kinks in the intermedi
region. In the Doppler limit, we calculated the generaliz
power law radiation damping of the kink. The qualitativ
behavior of the continuum coskx perturbation of the SG is a
special case of the phenomena that occur at the lower b
edge in the discrete SG problem. For the continuum SG th
is no upper band edge as there is in the discrete SG prob
There are phenomena such as a kink scattering off a w
changing direction, and returning a few wells before tra
ping, caused by the kink absorbing radiation it had pre
ously emitted, which required higher order equations ine to
describe. Such phenomena were observed in the discret
@3#, where the simulations were to all orders ine. The present
method applies to any nonlinear Klein-Gordon equatio
whose eigenfunctions and eigenvalue obtained by lineariz
about a kink solution, are known. Finally, the result holds
long as the KE@PE, even ife is finite.
ys.
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