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Spontaneous emission of a continuum sine-Gordon kink
in the presence of a spatially periodic potential

C. R. Willis
Department of Physics, Boston University, Boston, Massachussett 02215
(Received 19 September 1996

We find the spontaneous emission of radiation of a sine-Gordon kink perturbed by a spatially periodic
potential by solving the lowest order coupled collective variable and phonon equations. We show that the
radiation rate is finite, and that the qualitative properties of the kink and the radiation are a special case of the
phenomena that occur at the lower band edge in the discrete sine-Gordon equation. Thus we solve the radiation
threshold problem for a sine-Gordon kink in a periodic potential for weak coupling. In the Doppler limit we
calculate the rate of decay of the kink velocity due to phonon emission, and show that the rate is a generalized
power law.[S1063-651X97)04105-6

PACS numbegs): 03.40.Kf

I. INTRODUCTION variable (CV) equations of motion. Consequently, we solve
the radiation threshold problem of a SG kink in a periodic
There are many nonlinear problems which can be depotential. We show the radiation caused &goskx in the
scribed by the addition of potentials or inhomogeneity to acontinuum is essentially a special case of the radiation phe-
nonlinear Klein-Gordon equation which possess kink soluomena that occurs at the lower band due to discreteness that
tions. The additions will usually destroy the integrability if it Occurs in the discrete SG equation. The SG equation in the
exists and will alter the nature of the kink solutions. In thePresence ot cokxis
case of the discrete sine-Gord@®G) the effect of the dis-
creteness is to alter the shape of the kink, cause the kink to . \% _
radiate phonons and to cause the kink to be trapped in a well b—¢"= de~ (w/l9)*(1+ € cokx)sing, (1)
of the Peierls-Nabarr¢PN) potential. A very useful aid to

understanding the radiation and trapping phenomena for anh h . h o ith
arbitrary potential or inhomogeneity is to express the originaPN ere the dotprime) represents the derivative with respect

problem in terms of one or more collective variables and thd time (space. We introduce collective variables(t) rep-

phonon degrees of freedom. One finds that the radiation frorﬁesentlng the center of mass of the kink, i) represent-

the trapped case is very different than that from the uni"9 the slope of the kink with the ansatz
trapped case. The frequency in the trapped case is deter-
mined by the curvature of the PN well and by the Doppler d(x,t) = o T'(t) (x=X(1))]+ x[ T (1) (x=X(1)),t] (2

frequency in the untrapped case. In the Doppler limit where

the kinetic energy> potential energy the kink radiates \hereq(y)=tare. In Ref.[1] the rigorous derivation of the
phonons and damps due to spontaneous emission. The Dogquations of motion fog(t), X(t), andT'(t) are given for
pler radiation problem is analogous to the problem of calcuthe casee=0. The derivation fore#0 consists simply in

lating the radiation relaxation time of an accelerating elecreplacing @r/l)’[1—cosp] of Ref. [1] by (m/lg)?(1
tron due to radiation of electromagnetic waves. In fact, in+ ¢ coskx)[1—cosp].

this paper we use the same historical method used to calcu- For relativistic velocities it is necessary to have the col-
late the radiating electron relaxation time. The Only Signifi-|ective Variab|e]_‘(t)_ In the present paper, for convenience,
cant qualitative difference of the electron and nonlineafye consider the nonrelativistic or slightly relativistic case by
Klein-Gordon cases is that the kink case has a phonon cuto{ﬁking T'(t)=(m/lg) y(t) where y=(1—-X?) "2 ie., we

at the finite lower band edge, so that the Doppler radiatiofreatI" as a kinematic term instead of an independent dy-
ceases when the velocity of the kink decays to the value ofamical variable. Since we are considering spontaneous
the velocity which causes the Doppler frequency to equal themission caused by cokx with e small, we can linearize
frequency of the lower band edge. We will treat the con-gq, (1) for y with respect toe, and obtain

tinuum sine-Gordon kink so there is a single length scale in

the unperturbed problem, i.e., the length of the kink. The . 5 . " 5

perturbation or inhomogeneity may have many length scales. X~ X" 1 (7/lo)°cosrx=x+Lx=—ea"(mllo)“coskx,

For clarity of presentation we take a spatially period pertur- 3
bation of a single length scale *.

Consequently, here we solve for the spontaneous emissiomhere prime ons’ represents derivative with respect to the
of a continuum SG kink and calculate the radiation dampingargument ofo, and where we used’=sino. When we sub-
caused by a spatially periodic potentiakcoskx for small e  stitute Eq.(2) for ¢ in Eq. (1), multiply by ¢’, and integrate
using the lowest order i coupled phonon and collective overx, we obtain the equation of motion for the CX(t):
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. dv corresponding to the single tenm= 1. The qualitative radia-
MxX=<U’|£>:€( Tf/'o)zj o' (£)o"(€) tive phenomena that occur at the lower band edge in the
discrete SG occur in the continuum SG in thekoogoten-
><cosk( §/F+X)d§ (4)  tial. When a harmonic of), nQ}, is greater than the lower
band-edge phonont/l enters the phonon band for the first
where time, and there is a burst of phonon radiatj@h There is a
decrease of radiatioftalled a kneg[4], when the Doppler
_ o _ frequency crosses the lower phonon band edge, so that Dop-
My=I(c"|o") =8I, <A|B>=f A(©)B(&)de. pler radiation is no longer possible, and all that remains is

the much weaker anharmonic radiation. The energy of the
There are no terms proportional foon the right-hand side nonlinearz oscillator is

of Eq. (4) to first order ine, because the kink does not inter-

act further with the phonons the kink radiates as described by 0. 1vy oo

Eq. (3). Since we are considering the case where all the E,=E;+:Mz°+ M,
phonons come from spontaneous emission induced by

€ cokx so thaty~e, we can also neglect the dynamical whereM,=(27/k)28I" and the well depth of the potential is
dressing ofM,. The two coupled equation®) and (4) for  A,=2M,(Q/27)%=(8ew/yly) n(sinhy)~L. The threshold
X and y constitute a complete closed collective variable de<condition on the velocity for trapping the kink in a potential
scription to ordefe of Eq. (1) for ¢ with o given by Eq.(2).  well is z;=(Q/#), which corresponds to Xy
There are two constrainfd] that have to be satisfied which =T~1(2¢»/sinhy)"2.

are satisfied in the calculation of the radiation below. Equa-

O 2
E) [1—cos2rz], (8

tions (3) and (4) conserve the energy of the kink and IIl. KINK RADIATION
phonons to ordee which leads to the result that there are no
divergences in radiation rates in the lineardrtheory. In There are three kink radiation regimes. The first is the

particular, the spurious divergence that appears in the calciDoppler regime wher&X>(w/l,), and where the kinetic
lation of the phonon radiation rate using just E8).instead  energy(KE) is much greater than the potential ene(§).

of the coupled equation®) and(4) arises because the com- The completely trapped regime where-PKE and the inter-
plete linear theory ine requires the energy gain of the mediate regime where KE and PE are comparable. In the
phonons to be compensated by energy loss of the kink whicttapped regime wher&(t) <X+, and in the intermediate re-
causeX to be a decaying function of time instead of being agime, the kink radiates phonons at harmonic$)auch that
constant, thus invalidating the initial assumption thais  nQ>(w/lg). The flux at frequencynQ of the radiating

independent of timg2]. trapped kink is proportional toe?(kXy)2"/(n!)?, where
kXy<1, the lowest harmonic for smad| is typicallyn=4 or
Il. ANALYSIS OF EQUATION OF MOTION FOR X(t) greater. Most of the radiation comes from the harmonic with

the smallesn, such thain{)=1, where in the remainder of
We first analyze the nonlinear motion of the kink in the the paper we take units whete=1,, so that the band-edge
coskx potential neglecting radiation. Evaluating the integralsfrequency is one in the new units ang=(kw/2y). The

in Eq. (4), we obtainX= w?sinkX, where reason for the harmonic nearest the band edge radiating the
_ most is because the phonon density of states is largest at the
w?=(elwl)(7llg)*n*(sinhy) 1, (5  band edge. In the Doppler regimith which we are mainly

concerned in the papewe can take the kink to be an almost
free particle with constant velocity, i.e., X=v, as long as

kX>1. The solution of Eq(3) for x in the laboratory frame
is

wherel, is the size of the kink\ is the wavelength of the
potential, andp=(kly/2y).

The pointX=0 is unstable, so we definenz=kX+ ,
and Eq.(5) becomes

2+ (Q?/27)sin2mrz=0, x(x,t)= —ZGJWdIJIdT U (X)wSif o (t—7)]d7
0 0

where

) -X "(E—X ké dé, (9
0t (2012 (s o % | we=xanore-xweoske oz, ©)

which is the pendulum equation. The maximum value of thevhere
frequencyQ is Q,,=0.74(¢)Y?, and occurs fon =1, i.e.,

when the wavelength of the potential is equal to the size of

the kink. We can gain insight into the dosproblem when

we observe that E(6) is a special case of the equation of and
motion for the bare center of mass CV in a discrete[S(G

L= oy = (2mey) 2™V (il —tanty)

wi=(1+1?).
X + E QﬁsinanXzO 7) In o_rder to evaluate E(9), we perform a Lorentz transfor-
n=1 mation from the laboratory frame to the rest frame of the
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kink, because the phonons are orthogonal to the kink shape y(x’ t')= — em(2y02l) Ysecli(m/2) (yk+1)]

mode in the rest frame and thus the constraintsyoare

satisfied in the rest frame. The Lorentz transformatior’is

=y(x—vt), t'=y(t—x/v), K'=y(k—w/v) andw’'=y(w
—kv). In the laboratory frame the potential éashas no
time dependence, s@=0, and cokx becomes cog(x’
—ut’). The ¢ integral in Eqg.(9) becomes

(2mon) 2 dgel(i ~tanke)o” () cospk(eX(1')
~ (Wi yzkz)(sz)—mi e vkvt’sec+(g) (yk—I )}

+(k<—>—k)), (10

where the approximation represents the replacement
X(t)=['v(7)dr with time-dependent (t) by the constant
v, X(t)=wvt, which is valid as long as, which is a damped
oscillatory function of time, can be treated as approximatel

time independent. When we substitute EL0) into Eq. (9),
we obtain

x(x' 1) =(27) % Ref dl g (x',t)
0
X f " dt sinwy(t' —1)( Y2k~ w?)
0

T .
X secl{i)(yk—l)e'yk”‘nt(h—— K.

11

When we lett’— in thet integration, we obtain thé=
functions where 6= (a)=[5e"'“"dr=78(a) =iP(lla),
and whereP means the principal part ang= w,+ ykv. The
result of performing the time integration is

X(X',t')Z—gf dl(yzkzvz—wf)aq3sec%g)(yk—|)
0

.

XcogIx'—wt’)+

7l 8] w;— ykv ]+ tanhk’ P(

w|—'ykv>

7 tanhx’ 8 w,— ykv ]

+1P

l 1 ! !
m))sm(lx — ot )+(k<—>—k)]
12

The term with+k (—k) is the wave going to the riglgteft).

Usually theé function term is larger than the principal part

term. Consequently, we evaluate théunction terms which

X [I_COS{K’ —ykvt")+ Sin(K’ —ykvt')]

+ (ke —k)}. (13
We calculate the energy f|l§, which is defined as the time
average of the producﬁ((x’)a\,g, and obtain the net flux

S=(em)2k3(8yvl) Y secR[(m/2)(yk+1)]

+sech[(m/2)(yk—1)]} (14)
evaluated at a distance greater than the size of the kink,
where tank’'=1, and where the firssecond term in the
brackets is the flux to the righteft). In the limit | —0 the
right and left fluxes become equal in magnitude. More im-
cHortantly, ad —0, the band edge, the flux diverges, i.e., the
rate of increase of phonon energy becomes infinite, which is
impossible for the solution of Eq$3) and (4) because the
energy of kink plus phonons is conserved and we start ini-
ytiaIIy with a finite energy kink. The divergence results be-
cause the condition for the Doppler limit, i.e., the velocity of
the particle can be taken as effectively constant is no longer
true whenl —0. Since the energy of kink plus radiation is
conserved, the kink loses energy at the negative of the rate of
increase of the phonon energy. Consequetx(y) becomes
time dependent, and decreases appreciably-a®. The
cause of the problem is the phonon density of states, and the
6 function which results from taking the velocity of the kink
to be constant. There is no divergence when we use both
Egs. (5) and (9), which entails a time-dependent velocity,
because there is no longewdunction in frequency, and the
resultant frequency integral is over a smooth function of fre-
quency which is integrable at the-~0 limit.

IV. TIME DEPENDENCE OF X
DUE TORADIATION DAMPING

We can use the conservation of total energy to determine
the time dependence of the kink velocity in the limit where
KE>PE, because we can neglect the PE of the kink, and use
the fact that the time rate of change of the kink’s KE is the
negative of the total flux of phonons which is proportional to
€?; thus the velocity is slowly varying compared to the Dop-
pler frequencyykv, which is=1:

% (% MX ) = — (em)2k3(8IV) YsecR(m/2)(yk+1)

+secR(m/2)(yk—1)}. (15)
Define u=ykX, usel=(u2—1)*2 and substitute in Eq.
(15), which becomesu®(u?—1)Ydu=—7"1dt, where r

=32 (eym sech (/2)yk)’k®]~1, where we setl equal to
zero in the argument of the sech because the dominant con-

require the introduction of the phonon density of statesribution comes in the neighborhood of the band edge. The
p(w))dw;=dl, wherep(w))=(w/1). The argument of the condition for the validity of the first Born approximation is
o function vanishes whem equals the Doppler frequency 7> (ykv)~?, which is satisfied for sufficiently sma¥, and

ykv, and thus foll =[(ykv)?—1]"2 The solution fory in
the kink’s rest frame is

is of the same form as the usual Born approximation for
spontaneous emissian>1. The solution of Eq(15) is
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4(t—ty) ) v o 1 . ) " edge. If external damping and driving are added to Egjs.
=—m(pu =) (p"=3z) =27 In[u+(u"=1)"] and (7), Refs.[7] and [8], the fundamental problems that
(16) exist in the undamped and undriven case do not occur be-
cause(1l) the damping changes th®function that occurs in
wheret; is the time it takes the kink to lose energy, such thatgq. (12) into a Lorentzian of widthy, wherea is the external
n=vkX(t;)=1, at which point the kink stops radiating by damping constant which leads to a finite damping rate of the
the Doppler mechanism. The time is a function of only  kink proportional toa™1; and (2) in the steady state the
o= vkX(0), where X(0) is the initial velocity, and; is  velocity of the kink becomes a constant independent of time.
determined by setting=0 in Eq.(16) and using the defini- In conclusion, the first order ir coupled equations of
tion of 7. For typical values ofX(0), t;~0(7). The mini- motion for the kink center of mass((t), and phonons,
mum value ofr occurs foryk~3 which corresponds ta  x(t), solves the radiation threshold problem that was raised
~vlo, i.e., to ax about the size of a kink. When the dampedin earlier papers and thoroughly discussed in R@f. Our
time dependence of Eq16) for X(t) is substituted into results forykv <1, when there is no Doppler radiation, in-
X(t)=ft5((t’)dt’, andX(t) is inserted into Eq(9), the ra-  dicate that there is a weak anharmonic radiation forritie
diation rate remains finite. harmonic wherenQ2>1 due to the nonlinearity of the
The approach to spontaneous emission in this section isinkX motion. Whenykv>1 and KE>PE, there is strong
essentially the same as the elementary historical approach @oppler radiation because the Doppler frequencies are reso-
the problem of radiation damping of an accelerated electromant with frequencies in the phonon band in lowest order,
where the damping is calculated by using the conservation dfe., the first. If ykv >1 and KE>PE, there are both Doppler
energy of the particle plus radiation; e.g., see R8J. The  and anharmonic radiation present. In the Doppler limit when
acceleration of the kink in this case is caused by theyky becomes equal to 1, the Doppler radiation ceases, and

T

sin27z term in Eq.(6). there a sharp drop in the radiation rate called a knee. In Ref.
[9], where the same model was used, the knee in the radia-
V. DISCUSSION AND CONCLUSION tion rate was missed because all the frequencies in the simu-

lations corresponded to Doppler frequencies in the gap and

th Thel sa_:ne Kﬂe Okf. bl(eha¥rilor;$ obsterve((llj_int_the deﬁ‘y rate Qiot in the phonon band. Consequently, the only radiation was
e velocity of the kink in the discrete radiation problég) the anharmonic radiations of the kinks in the intermediate

where a complicated power-law type of decayXt) is also  regjon. In the Doppler limit, we calculated the generalized
observed. In both the present km@otential problem and the power law radiation damping of the kink. The qualitative
discrete kink problem whenkX is less than 1, there is a behavior of the continuum cks perturbation of the SG is a
sharp drop in the rate of radiation called a “knef#] be-  special case of the phenomena that occur at the lower band
cause there is no longer any Doppler radiation, and all thagdge in the discrete SG problem. For the continuum SG there
remains is weaker radiation which is always present due t@ no upper band edge as there is in the discrete SG problem.
the nonlinear harmonica() which are resonant with the There are phenomena such as a kink scattering off a well,
phonon band. However, in the discrete SG there is more thaghanging direction, and returning a few wells before trap-
one knee, i.e., there is a knee for eacim the sum in Eq(7)  ping, caused by the kink absorbing radiation it had previ-
while there is only one knee in the continuum SG with aously emitted, which required higher order equations to
spatially periodic potential. describe. Such phenomena were observed in the discrete SG
Essentially the same flug, Eq.(14), was obtained in Ref. [3], where the simulations were to all ordersiriThe present
[6] by finding a different Green’s function for E¢) linear- method applies to any nonlinear Klein-Gordon equation,
ized about the kink solution with constant velocity. The au-whose eigenfunctions and eigenvalue obtained by linearizing
thors of Ref[6] treated the constant velocity case only, andabout a kink solution, are known. Finally, the result holds as
their solution was not valid in the neighborhood of the bandong as the KE-PE, even ife is finite.
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